

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Sputnik 0.0.0 documentation

Sputnik [https://github.com/Polytonic/Sputnik]

[image: Build Status] [https://travis-ci.org/Polytonic/Sputnik] [image: Coverage Status] [https://coveralls.io/r/Polytonic/Sputnik]

Summary

Sputnik is a Python IRC bouncer written using asyncio [https://docs.python.org/3/library/asyncio.html] and backed by Redis [https://github.com/antirez/redis]. It is intended as a lightweight, zero-configuration bouncer capable of deployment on cloud providers such as Heroku [http://heroku.com]. Sputnik is written in pure Python, so adding custom functionality is relatively straightforward.

Features

	Automatic Network Reconnection

	Channel Saver

	Buffered Message History

	Multi-Client Connections

Getting Started

You can easily deploy a Sputnik instance on Heroku using the button below.

[image: Deploy] [https://heroku.com/deploy?template=https://github.com/Polytonic/Sputnik/]

Alternately, you can manually create and deploy your own Heroku app, or run Sputnik on your own computer or server. To do so requires a Python 3.4 interpreter and Redis (optional), if you want persistence between restarts or crashes.

Documentation

Sputnik documentation is built using Sphinx [http://sphinx-doc.org/faq.html] and publicly hosted at http://sputnik.readthedocs.org/. You can also build and serve the documentation locally.

git submodule update --init --recursive
cd docs && make dirhtml && cd _build/dirhtml
python -m SimpleHTTPServer

Then visit http://localhost:8000 in a browser.

License

The MIT License (MIT)

Copyright (c) 2014 Kevin Fung et al.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Modules

	bouncer module

	client module

	connection module

	datastore module

	handlers module

	network module

	server module

Indices and Tables

	Index

	Module Index

 Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sputnik 0.0.0 documentation

bouncer module

Sputnik Bouncer Implementation

This module provides the Sputnik Bouncer implementation. As the primary entry
point, the Bouncer is responsible for bootstrapping the entire program.

	
class bouncer.Bouncer[source]

	Bases: object [http://docs.python.org/library/functions.html#object]

A singleton that manages connected devices.

The Bouncer provides the base functionality needed to instantiate a new
Client or Network. It also acts as a bridge between connected Clients and
Networks by maintaining an authoritative record of each connected device.

	
clients

	set of sputnik.Client

A set of connected Clients.

	
datastore

	sputnik.Datastore

A Redis interface.

	
networks

	dict of sputnik.Network

A dictionary of connected Networks.

	
add_network(network, hostname, port, nickname, username, realname, password=None, usermode=0)[source]

	Connects the Bouncer to an IRC network.

This forms the credentials into a dictionary. It then registers the
network in the datastore, and connects to the indicated IRC network.

	Parameters:	
	network (str [http://docs.python.org/library/functions.html#str]) – The name of the IRC network to connect to.

	hostname (str [http://docs.python.org/library/functions.html#str]) – The hostname of the IRC network to connect to.

	port (int [http://docs.python.org/library/functions.html#int]) – The port to connect using.

	nickname (str [http://docs.python.org/library/functions.html#str]) – The IRC nickname to use when connecting.

	username (str [http://docs.python.org/library/functions.html#str]) – The IRC ident to use when connecting.

	realname (str [http://docs.python.org/library/functions.html#str]) – The real name of the user.

	password (str, optional) – Bouncer password. Defaults to None.

	usermode (int, optional) – The IRC usermode. Defaults to 0.

	
remove_network(network)[source]

	Removes a network from the Bouncer.

This disconnects the Bouncer from the indicated network and unregisters
the network from the datastore.

	Parameters:	network (str [http://docs.python.org/library/functions.html#str]) – the name of a network.

	
start(hostname='', port=6667)[source]

	Starts the IRC and HTTP listen servers.

This creates the IRC server-portion of the Bouncer, allowing it to
accept connections from IRC clients. It also starts the HTTP server,
enabling browsers to connect to the web interface.

Note

This is a blocking call.

	Parameters:	
	hostname (str, optional) – Hostname to use. Defaults to "".

	port (int, optional) – The port to listen on. Defaults to 6667.

 Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sputnik 0.0.0 documentation

client module

Sputnik Client Implementation

This module provides the Sputnik Client implementation. This is a subclass of
a Connection, and defines an interface to IRC client applications implementing
_RFC 2812: https://tools.ietf.org/html/rfc2812 .

	
class client.Client(bouncer)[source]

	Bases: connection.Connection

An instance of a connection from an IRC client.

A Client is the product of an asyncio protocol factory, and represents
an instance of a connection from an IRC client to the listen server. It
does not implement an actual IRC client, as defined in
_RFC 2812: https://tools.ietf.org/html/rfc2812 .

	
bouncer

	sputnik.Bouncer

A reference to the Bouncer singleton.

	
broker

	sputnik.Network

The connected Network instance.

	
network

	str

The name of the IRC network to connect to.

	
ready

	bool

Indicates if the Client has connected to a Network.

	
connection_lost(exc)[source]

	Unregister the connected Client from the Bouncer.

Removes the Client from the set of connected Clients in the Bouncer
before the connection is terminated. After this point, there should be
no remaining references to this instance of the Client.

	
connection_made(transport)[source]

	Registers the connected Client with the Bouncer.

Adds the Client to the set of connected Clients in the Bouncer and
saves the transport for later use.

	
data_received(data)[source]

	Handles incoming messages from connected IRC clients.

Messages coming from IRC clients are potentially batched, and need to
be parsed into individual lines before any other operation may occur.
Afterwards, we split lines according to the IRC message format and then
perform actions as appropriate.

	
forward(*args)[source]

	Writes a message to the Network.

Because the Client represents an instance of a connection from an IRC
client, we instead need to write to the transport associated with the
connected network.

	Parameters:	args (list of str) – A list of strings to concatenate.

 Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sputnik 0.0.0 documentation

connection module

Sputnik Connection Implementation

This module provides the Sputnik Connection implementation. This is a base
class that defines several helper functions for common tasks related to
transport-level interactions, such as message encoding and message passing.

	
class connection.Connection[source]

	Bases: asyncio.protocols.Protocol

A generic instance of a network connection.

A Connection is a base class that represents an instance of a network
connection. The Connection implements commonly used actions that may be
performed on messages.

	
decode(line)[source]

	Attempts to decode a line as UTF-8, with fallback to Latin-1.

We try to maintain a full-Unicode presence where possible. However, not
all IRC servers are encoding using UTF-8, so we shadow str.decode()
and provide a fallback to Latin-1 when needed.

	Parameters:	line (str [http://docs.python.org/library/functions.html#str]) – A byte-string message to decode.

	Returns:	A decoded message.

	Return type:	str

	
normalize(line, ending='\r\n')[source]

	Ensures that a line is terminated with the correct line endings.

The IRC protocol specifies that line endings should use CRLF line
endings. This ensures that lines conform to this standard. In the event
of a server that does not conform to the specification, we preserve
the ability to provide an alternative line ending character sequence.

	Args:

	line (str): A message to be sent to the IRC network.
ending (str, optional): The line ending. Defaults to ``“

“``.

	
send(*args)[source]

	Writes a message to the connected interface.

Messages are typically of the form <command> <message>. This
encapsulates the IRC messaging protocol by concatenating messages and
checking their line endings before encoding the message into raw bytes,
as part of the asyncio transport mechanism.

	Parameters:	args (list of str) – A list of strings to concatenate.

 Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sputnik 0.0.0 documentation

datastore module

Sputnik Datastore Implementation

This module provides the Sputnik Datastore implementation. It implements a thin
wrapper around Redis, which is required in order to persist data across Bouncer
restarts or network disconnections. This functionality is required due to the
ephemeral filesystems typical to most Platform-as-a-Service Providers (PaaS).

	
class datastore.Datastore(hostname, port)[source]

	Bases: object [http://docs.python.org/library/functions.html#object]

A singleton that provides a thin wrapper to Redis.

The Datastore is responsible for persisting networks and channels in the
event of an unexpected crash by either the Bouncer or a connected network.
It also holds persistent, shared variables, such as the Bouncer password.

	
database

	redis.Redis

A Redis database connection.

	
add_channel(network, channel, password='')[source]

	Adds a channel to the Redis.

	Parameters:	
	network (str [http://docs.python.org/library/functions.html#str]) – The name of a network.

	channel (str [http://docs.python.org/library/functions.html#str]) – The name of a channel.

	password (str, optional) – The channel password. Defaults to "".

	
add_network(network, hostname, port, nickname, username, realname, password=None, usermode=0)[source]

	Adds a network to the Redis instance.

	Parameters:	
	network (str [http://docs.python.org/library/functions.html#str]) – The name of the IRC network to connect to.

	hostname (str [http://docs.python.org/library/functions.html#str]) – The hostname of the IRC network to connect to.

	port (int [http://docs.python.org/library/functions.html#int]) – The port to connect using.

	nickname (str [http://docs.python.org/library/functions.html#str]) – The IRC nickname to use when connecting.

	username (str [http://docs.python.org/library/functions.html#str]) – The IRC ident to use when connecting.

	realname (str [http://docs.python.org/library/functions.html#str]) – The real name of the user.

	password (str, optional) – Bouncer password. Defaults to None.

	usermode (int, optional) – The IRC usermode. Defaults to 0.

	
check_password(password_attempt)[source]

	Checks a password attempt against the Bouncer password.

	Parameters:	password_attempt (str [http://docs.python.org/library/functions.html#str]) – The password attempt.

	Returns:	Whether the password matched.

	Return type:	bool

	
get_channels(network='')[source]

	Retrieves all connected channels from Redis.

This gets credentials for all connected channels, where credentials are
of the form { “<network/channel>” : “<password>” }. If the network
argument is specified, then the output is filtered to only include
channels from the indicated network.

	Parameters:	network (str, optional) – The name of a network. Defaults to "".

	Returns:	A dictionary of channel credentials.

	Return type:	dict

	
get_networks()[source]

	Retrieves all connected networks from Redis.

This gets credentials for all connected networks, where credentials
contain all values necessary to reconstruct a network connection, where
networks are of the form { “<network_name>” : “<credentials>” }.

	Returns:	A dictionary of network credentials.

	Return type:	dict

	
get_password()[source]

	Retrieves the Bouncer password from Redis.

	Returns:	The encrypted Bouncer password.

	Return type:	str

	
remove_channel(network, channel)[source]

	Removes a channel from Redis.

	Parameters:	
	network (str [http://docs.python.org/library/functions.html#str]) – The name of a network.

	channel (str [http://docs.python.org/library/functions.html#str]) – The name of a channel.

	
remove_network(network, hard=True)[source]

	Removes a network from Redis.

	Parameters:	
	network (str [http://docs.python.org/library/functions.html#str]) – The name of a network to remove.

	hard (bool [http://docs.python.org/library/functions.html#bool]) – When True, clears all associated channels.

	
set_password(password='cosmonaut')[source]

	Saves a new Bouncer password to Redis.

	Parameters:	password (str, optional) – The new password for the Bouncer.

 Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sputnik 0.0.0 documentation

handlers module

Sputnik Request Handlers

This module provides Tornado Request Handlers for the Sputnik Web Interface.

	
class handlers.AddHandler(application, request, **kwargs)[source]

	Bases: handlers.BaseHandler

The RequestHandler that serves the add network page.

The add network page uses a form to receive new network settings.
If a network already exists using the provided name, the network
is not added.

	
get()[source]

	Renders the add network page.

The add network page provides a form for adding a new network,
complete with placeholder settings.

	
post()[source]

	Handles add network requests.

If a network already exists using the provided name, the network is
not added.

	
class handlers.BaseHandler(application, request, **kwargs)[source]

	Bases: tornado.web.RequestHandler

A base handler that stores the Bouncer singleton.

	
get_current_user()[source]

	

	
initialize(bouncer)[source]

	Initializes the RequestHandler and stores the Bouncer.

	Parameters:	bouncer (sputnik.Bouncer) – The singleton Bouncer instance.

	
class handlers.DeleteHandler(application, request, **kwargs)[source]

	Bases: handlers.BaseHandler

The RequestHandler that handles delete network requests.

	
get(network_name)[source]

	Handles delete network requests.

	Parameters:	network_name (str [http://docs.python.org/library/functions.html#str]) – Network name of the network to delete.

	
class handlers.EditHandler(application, request, **kwargs)[source]

	Bases: handlers.BaseHandler

The RequestHandler that serves the edit network page.

The edit network page uses a form to receive updated settings from users.
When a network is editted, it is disconnected and then recreated using the
new settings.

	
get(network_name)[source]

	Renders the edit network page.

The edit network page shows current settings for a network and provides
a form for submitting changes to that network.

	Parameters:	network_name (str [http://docs.python.org/library/functions.html#str]) – Network name of the network to edit.

	
post(network_name)[source]

	Handles edit network requests.

The existing network is disconnected and a new connection is started
using the new settings.

	Parameters:	network_name (str [http://docs.python.org/library/functions.html#str]) – Network name of the network to edit.

	
class handlers.LoginHandler(application, request, **kwargs)[source]

	Bases: handlers.BaseHandler

The RequestHandler that serves the login page.

The login page prompts the user for their password and authenticates them
when the password matches the one stored by the bouncer in its database.

	
get()[source]

	Renders the login page.

The login page uses a form to ask the user for their password.

	
post()[source]

	Handles login requests.

Checks the password against the stored password and authenticates.

	
class handlers.LogoutHandler(application, request, **kwargs)[source]

	Bases: handlers.BaseHandler

The RequestHandler that handles log out requests.

Redirects to the homepage after clearing authentication.

	
get()[source]

	Handles log out requests.

Redirects to the homepage after clearing authentication.

	
class handlers.MainHandler(application, request, **kwargs)[source]

	Bases: handlers.BaseHandler

The main RequestHandler that serves the home page.

The home page displays the current list of networks.

	
get()[source]

	Renders the home page.

The home page displays the current list of networks.

	
class handlers.SettingsHandler(application, request, **kwargs)[source]

	Bases: handlers.BaseHandler

The RequestHandler that serves the settings page.

Allows users to change their password.

	
get()[source]

	Renders the settings page.

The settings page uses a form to allow users to change their password.

	
post()[source]

	Handles settings requests.

Change password requests require the current password to match and
two entries of the new password to match.

 Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Sputnik 0.0.0 documentation

network module

Sputnik Network Implementation

This module provides the Sputnik Network implementation. This is a subclass of
a Connection, and defines an interface to IRC server networks implementing
_RFC 2813: https://tools.ietf.org/html/rfc2813 .

	
class network.Network(bouncer, network, hostname, port, nickname, username, realname, password=None, usermode=0)[source]

	Bases: connection.Connection

An instance of a connection to an IRC network.

A Network is the product of an asyncio protocol factory, and represents an
instance of a connection from an IRC client to an IRC server. This could
be either a single IRC server, or more likely, a network of servers behind
a load balancer. It does not implement an actual IRC server, as defined in

	
??? (revisit this later)

	

	
attempt_reconnect(attempt=0, retries=5)[source]

	Attempts to reconnect to a network that unexpectedly disconnected.

This is only called if we drop the connection to a network and the
connected flag is set, to distinguish from intentional disconnects.

	Parameters:	
	attempt (int [http://docs.python.org/library/functions.html#int]) – The current attempt count.

	retries (int [http://docs.python.org/library/functions.html#int]) – The number of times to attempt to reconnect.

	
connection_lost(exc)[source]

	Unregisters the connected Network from the Bouncer.

Removes the Network from the dictionary of connected Clients in the
Bouncer before the connection is terminated. After this point, there
should be no remaining references to this instance of the Network.

	
connection_made(transport)[source]

	Registers the connected Network with the Bouncer.

Adds the Network to the set of connected Networks in the Bouncer and
saves the transport for later use. This also creates a collection of
buffers and logging facilities, and initiates the authentication
handshake, if applicable.

	
data_received(data)[source]

	Handles incoming messages from connected IRC networks.

Messages coming from IRC networks are potentially batched and need to
be parsed into individual lines before any other operation may occur.
On certain occasions, incoming data may overflow the transport buffer,
requiring additional logic to reconstitute the messages into a single
stream. Afterwards, we split lines according to the IRC message format
and perform actions as appropriate.

	
forward(*args)[source]

	Writes a message to all connected CLients.

Because the Network represents an instance of a connection to an IRC
network, we instead need to write to the transports of all clients.

	Parameters:	args (list of str) – A list of strings to concatenate.

 Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Sputnik 0.0.0 documentation

server module

Sputnik HTTPServer Implementation

This module provides the Sputnik HTTPServer implementation. It is responsible
for serving the web interface, and interfaces with the Bouncer singleton to
connect to and disconnect from networks.

	
class server.HTTPServer(bouncer)[source]

	Bases: tornado.web.Application

An Asynchronous HTTP Server that diplays the frontend.

The HTTPServer renders the frontend and accepts commands used to control
the Bouncer singleton. For development purposes, it may be helpful to set
the DEBUG environment variable. e.g. export DEBUG=True

	
start(port=8080)[source]

	Starts the HTTP listen server.

This loads the Tornado HTTPServer on the specified port.

	Parameters:	port (int, optional) – The port to listen on. Defaults to 8080

 Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

 Navigation

 	
 index

 	
 modules |

 	Sputnik 0.0.0 documentation

 Python Module Index

 b |
 c |
 d |
 h |
 n |
 s

 			

 		
 b	

 	
 	
 bouncer	

 			

 		
 c	

 	
 	
 client	

 	
 	
 connection	

 			

 		
 d	

 	
 	
 datastore	

 			

 		
 h	

 	
 	
 handlers	

 			

 		
 n	

 	
 	
 network	

 			

 		
 s	

 	
 	
 server	

 Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

 Navigation

 	
 index

 	
 modules |

 	Sputnik 0.0.0 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S

A

 	

 	add_channel() (datastore.Datastore method)

 	add_network() (bouncer.Bouncer method)

 	

 	(datastore.Datastore method)

 	

 	AddHandler (class in handlers)

 	attempt_reconnect() (network.Network method)

B

 	

 	BaseHandler (class in handlers)

 	Bouncer (class in bouncer)

 	

 	bouncer (client.Client attribute)

 	

 	(module)

 	broker (client.Client attribute)

C

 	

 	check_password() (datastore.Datastore method)

 	Client (class in client)

 	client (module)

 	clients (bouncer.Bouncer attribute)

 	

 	Connection (class in connection)

 	connection (module)

 	connection_lost() (client.Client method)

 	

 	(network.Network method)

 	connection_made() (client.Client method)

 	

 	(network.Network method)

D

 	

 	data_received() (client.Client method)

 	

 	(network.Network method)

 	database (datastore.Datastore attribute)

 	datastore (bouncer.Bouncer attribute)

 	Datastore (class in datastore)

 	

 	datastore (module)

 	decode() (connection.Connection method)

 	DeleteHandler (class in handlers)

E

 	

 	EditHandler (class in handlers)

F

 	

 	forward() (client.Client method)

 	

 	(network.Network method)

G

 	

 	get() (handlers.AddHandler method)

 	

 	(handlers.DeleteHandler method)

 	(handlers.EditHandler method)

 	(handlers.LoginHandler method)

 	(handlers.LogoutHandler method)

 	(handlers.MainHandler method)

 	(handlers.SettingsHandler method)

 	get_channels() (datastore.Datastore method)

 	get_current_user() (handlers.BaseHandler method)

 	

 	get_networks() (datastore.Datastore method)

 	get_password() (datastore.Datastore method)

H

 	

 	handlers (module)

 	

 	HTTPServer (class in server)

I

 	

 	initialize() (handlers.BaseHandler method)

L

 	

 	LoginHandler (class in handlers)

 	

 	LogoutHandler (class in handlers)

M

 	

 	MainHandler (class in handlers)

N

 	

 	Network (class in network)

 	network (client.Client attribute)

 	

 	(module)

 	

 	networks (bouncer.Bouncer attribute)

 	normalize() (connection.Connection method)

P

 	

 	payments.dotpay.DotpayProvider (built-in class)

 	post() (handlers.AddHandler method)

 	

 	(handlers.EditHandler method)

 	(handlers.LoginHandler method)

 	(handlers.SettingsHandler method)

 	

 	
 Python Enhancement Proposals

 	

 	PEP 287

R

 	

 	ready (client.Client attribute)

 	remove_channel() (datastore.Datastore method)

 	

 	remove_network() (bouncer.Bouncer method)

 	

 	(datastore.Datastore method)

 	
 RFC

 	

 	RFC 2822

S

 	

 	send() (connection.Connection method)

 	server (module)

 	set_password() (datastore.Datastore method)

 	

 	SettingsHandler (class in handlers)

 	start() (bouncer.Bouncer method)

 	

 	(server.HTTPServer method)

 Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

 _static/comment.png

_themes/sphinx_rtd_theme/README.html

 Navigation

 		
 index

 		
 modules |

 		Sputnik 0.0.0 documentation »

Read the Docs Sphinx Theme

View a working demo [http://docs.readthedocs.org] over on readthedocs.org [http://www.readthedocs.org].

This is a mobile-friendly sphinx [http://www.sphinx-doc.org] theme I made for readthedocs.org [http://www.readthedocs.org]. It’s
currently in development there and includes some rtd variable checks that can be ignored
if you’re just trying to use it on your project outside of that site.

This repo also exists as a submodule within the readthedocs itself, so please make your edits to
the SASS files here, rather than the .css files on RTD.

[image: ../../_images/screen_mobile.png]

Installation

Via package

Download the package or add it to your requirements.txt file:

$ pip install sphinx_rtd_theme

In your conf.py file:

import sphinx_rtd_theme

html_theme = "sphinx_rtd_theme"

html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]

Via git or download

Symlink or subtree the sphinx_rtd_theme/sphinx_rtd_theme repository into your documentation at
docs/_themes/sphinx_rtd_theme then add the following two settings to your Sphinx
conf.py file:

html_theme = "sphinx_rtd_theme"
html_theme_path = ["_themes",]

How the Table of Contents builds

Currently the left menu will build based upon any toctree(s) defined in your index.rst file.
It outputs 2 levels of depth, which should give your visitors a high level of access to your
docs. If no toctrees are set the theme reverts to sphinx’s usual local toctree.

It’s important to note that if you don’t follow the same styling for your rST headers across
your documents, the toctree will misbuild, and the resulting menu might not show the correct
depth when it renders.

Also note that the table of contents is set with includehidden=true. This allows you
to set a hidden toc in your index file with the hidden [http://sphinx-doc.org/markup/toctree.html] property that will allow you
to build a toc without it rendering in your index.

By default, the navigation will “stick” to the screen as you scroll. However if your toc
is vertically too large, it revert to static positioning. To disable the sticky nav
alltogether change the setting in conf.py.

Contributing or modifying the theme

The sphinx_rtd_theme is primarily a sass [http://www.sass-lang.com] project that requires a few other sass libraries. I’m
using bower [http://www.bower.io] to manage these dependencies and sass [http://www.sass-lang.com] to build the css. The good news is
I have a very nice set of grunt [http://www.gruntjs.com] operations that will not only load these dependecies, but watch
for changes, rebuild the sphinx demo docs and build a distributable version of the theme.
The bad news is this means you’ll need to set up your environment similar to that
of a front-end developer (vs. that of a python developer). That means installing node and ruby.

Set up your environment

		Install sphinx [http://www.sphinx-doc.org] into a virtual environment.

pip install sphinx

		Install sass

gem install sass

		Install node, bower and grunt.

// Install node
brew install node

// Install bower and grunt
npm install -g bower grunt-cli

// Now that everything is installed, let's install the theme dependecies.
npm install

Now that our environment is set up, make sure you’re in your virtual environment, go to
this repository in your terminal and run grunt:

grunt

This default task will do the following very cool things that make it worth the trouble.

		It’ll install and update any bower dependencies.

		It’ll run sphinx and build new docs.

		It’ll watch for changes to the sass files and build css from the changes.

		It’ll rebuild the sphinx docs anytime it notices a change to .rst, .html, .js
or .css files.

Before you create an issue

I don’t have a lot of time to maintain this project due to other responsibilities.
I know there are a lot of Python engineers out there that can’t code sass / css and
are unable to submit pull requests. That said, submitting random style bugs without
at least providing sample documentation that replicates your problem is a good
way for me to ignore your request. RST unfortunately can spit out a lot of things
in a lot of ways. I don’t have time to research your problem for you, but I do
have time to fix the actual styling issue if you can replicate the problem for me.

Before you send a Pull Request

When you’re done with your edits, you can run grunt build to clean out the old
files and rebuild a new distribution, compressing the css and cleaning out
extraneous files. Please do this before you send in a PR.

Using this theme locally, then building on Read the Docs?

Currently if you import sphinx_rtd_theme in your local sphinx build, then pass
that same config to Read the Docs, it will fail, since RTD gets confused. If
you want to run this theme locally and then also have it build on RTD, then
you can add something like this to your config. Thanks to Daniel Oaks for this.

on_rtd is whether we are on readthedocs.org, this line of code grabbed from docs.readthedocs.org
on_rtd = os.environ.get('READTHEDOCS', None) == 'True'

if not on_rtd: # only import and set the theme if we're building docs locally
 import sphinx_rtd_theme
 html_theme = 'sphinx_rtd_theme'
 html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]

otherwise, readthedocs.org uses their theme by default, so no need to specify it

TODO

		Separate some sass variables at the theme level so you can overwrite some basic colors.

 © Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

_static/plus.png

_themes/sphinx_rtd_theme/demo_docs/source/list.html

 Navigation

 		
 index

 		
 modules |

 		Sputnik 0.0.0 documentation »

Important

wanna play a game?

		inside

		this

		list

		in the world

		hi

		his

hi

A list

		here
- is
- some

		list

		items

		yahoo [http://www.yahoo.com]

		huh

		how

		inline literall

		inline literall

		inline literall

Second list level

		here is a list in a second-level section.

		yahoo [http://www.yahoo.com]

		yahoo [http://www.yahoo.com]

		yahoo [http://www.yahoo.com]

		here is an inner bullet oh

		one more with an inline literally. yahoo [http://www.yahoo.com]

heh heh. child. try to beat this embed:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10

		# -*- coding: utf-8 -*-
"""Test Module for sphinx_rtd_theme."""

class Foo:

 r"""Docstring for class Foo.

 This text tests for the formatting of docstrings generated from output
 ``sphinx.ext.autodoc``. Which contain reST, but sphinx nests it in the

		and another. yahoo [http://www.yahoo.com]

		yahoo [http://www.yahoo.com]

		hi

		and hehe

But deeper down the rabbit hole

		I kept saying that, “deeper down the rabbit hole”. yahoo [http://www.yahoo.com]
		I cackle at night yahoo [http://www.yahoo.com].

		I’m so lonely here in GZ guangzhou

		A man of python destiny, hopes and dreams. yahoo [http://www.yahoo.com]
		yahoo [http://www.yahoo.com]
		yahoo [http://www.yahoo.com] hi

		destiny

 © Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

_static/comment-bright.png

_static/comment-close.png

modules.html

 Navigation

 		
 index

 		
 modules |

 		Sputnik 0.0.0 documentation »

sputnik

		bouncer module

		client module

		connection module

		datastore module

		handlers module

		network module

		server module

 © Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

_static/up.png

_modules/bouncer.html

 Navigation

 		
 index

 		
 modules |

 		Sputnik 0.0.0 documentation »

 		Module code »

 Source code for bouncer

"""Sputnik Bouncer Implementation

This module provides the Sputnik Bouncer implementation. As the primary entry
point, the Bouncer is responsible for bootstrapping the entire program.
"""

import asyncio
import os
import redis
from client import Client
from datastore import Datastore
from network import Network
from server import HTTPServer

[docs]class Bouncer(object):
 """A singleton that manages connected devices.

 The Bouncer provides the base functionality needed to instantiate a new
 Client or Network. It also acts as a bridge between connected Clients and
 Networks by maintaining an authoritative record of each connected device.

 Attributes:
 clients (set of sputnik.Client): A set of connected Clients.
 datastore (sputnik.Datastore): A Redis interface.
 networks (dict of sputnik.Network): A dictionary of connected Networks.
 """

 def __init__(self):
 """Creates an instance of a Bouncer.

 Initializes an empty set and an empty dictionary for later use, then
 reloads previously connected networks from the Datastore.
 """

 self.clients = set()
 self.networks = dict()

 try: # Attempt a Datastore Connection

 self.datastore = Datastore(hostname="localhost", port="6379")
 self.datastore.database.ping()

 except redis.ConnectionError: # Continue Without Persistence

 self.datastore = None
 print("Failed to Connect to a Redis Instance.\n"
 "Continuing Without Persistence.")

 if self.datastore:

 if not self.datastore.get_password():
 self.datastore.set_password()

 history = self.datastore.get_networks()
 for credentials in history.values():
 self.add_network(**credentials)

[docs] def start(self, hostname="", port=6667):
 """Starts the IRC and HTTP listen servers.

 This creates the IRC server-portion of the Bouncer, allowing it to
 accept connections from IRC clients. It also starts the HTTP server,
 enabling browsers to connect to the web interface.

 Note:
 This is a blocking call.

 Args:
 hostname (str, optional): Hostname to use. Defaults to ``""``.
 port (int, optional): The port to listen on. Defaults to 6667.
 """

 hport = os.getenv("RUPPELLS_SOCKETS_LOCAL_PORT")
 if hport: port = int(hport)

 loop = asyncio.get_event_loop()
 coro = loop.create_server(lambda: Client(self), hostname, port)
 loop.run_until_complete(coro)
 HTTPServer(self).start()

 try: loop.run_forever()
 except KeyboardInterrupt: pass
 finally: loop.close()

[docs] def add_network(self, network, hostname, port,
 nickname, username, realname,
 password=None, usermode=0):
 """Connects the Bouncer to an IRC network.

 This forms the credentials into a dictionary. It then registers the
 network in the datastore, and connects to the indicated IRC network.

 Args:
 network (str): The name of the IRC network to connect to.
 hostname (str): The hostname of the IRC network to connect to.
 port (int): The port to connect using.
 nickname (str): The IRC nickname to use when connecting.
 username (str): The IRC ident to use when connecting.
 realname (str): The real name of the user.
 password (str, optional): Bouncer password. Defaults to ``None``.
 usermode (int, optional): The IRC usermode. Defaults to ``0``.
 """

 credentials = { "network" : network,
 "nickname" : nickname,
 "username" : username,
 "realname" : realname,
 "hostname" : hostname,
 "port" : port,
 "password" : password }

 if self.datastore: self.datastore.add_network(**credentials)
 loop = asyncio.get_event_loop()
 coro = loop.create_connection(lambda: Network(self, **credentials),
 hostname, port)
 asyncio.async(coro)

[docs] def remove_network(self, network):
 """Removes a network from the Bouncer.

 This disconnects the Bouncer from the indicated network and unregisters
 the network from the datastore.

 Args:
 network (str): the name of a network.
 """

 if network in self.networks:
 self.networks[network].connected = False
 self.networks[network].transport.close()
 if self.datastore: self.datastore.remove_network(network)

 © Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

_static/down-pressed.png

_modules/datastore.html

 Navigation

 		
 index

 		
 modules |

 		Sputnik 0.0.0 documentation »

 		Module code »

 Source code for datastore

"""Sputnik Datastore Implementation

This module provides the Sputnik Datastore implementation. It implements a thin
wrapper around Redis, which is required in order to persist data across Bouncer
restarts or network disconnections. This functionality is required due to the
ephemeral filesystems typical to most Platform-as-a-Service Providers (PaaS).
"""

import bcrypt
import json
import os
import redis

[docs]class Datastore(object):
 """A singleton that provides a thin wrapper to Redis.

 The Datastore is responsible for persisting networks and channels in the
 event of an unexpected crash by either the Bouncer or a connected network.
 It also holds persistent, shared variables, such as the Bouncer password.

 Attributes:
 database (redis.Redis): A Redis database connection.
 """

 def __init__(self, hostname, port):
 """Creates an instance of a Datastore.

 Connects to a Redis instance running on the given hostname and port.

 Args:
 hostname (str): A hostname for a Redis instance.
 port (int): A port for a Redis instance.
 """

 if hostname and port: redis_url = "redis://%s:%s" % (hostname, port)
 self.database = redis.from_url(os.getenv("REDISTOGO_URL", redis_url))

[docs] def get_networks(self):
 """Retrieves all connected networks from Redis.

 This gets credentials for all connected networks, where credentials
 contain all values necessary to reconstruct a network connection, where
 networks are of the form `{ "<network_name>" : "<credentials>" }`.

 Returns:
 dict: A dictionary of network credentials.
 """

 networks = {}
 for key in self.database.keys("network=*"):
 val = json.loads(self.database.get(key).decode())
 networks[key.decode().split("=")[1]] = val
 return networks

[docs] def get_channels(self, network=""):
 """Retrieves all connected channels from Redis.

 This gets credentials for all connected channels, where credentials are
 of the form `{ "<network/channel>" : "<password>" }`. If the network
 argument is specified, then the output is filtered to only include
 channels from the indicated network.

 Args:
 network (str, optional): The name of a network. Defaults to ``""``.

 Returns:
 dict: A dictionary of channel credentials.
 """

 channels = {}
 for key in self.database.keys("".join(["channel=", network, "*"])):
 password = self.database.get(key).decode() or None
 channels[key.decode().split("=")[1]] = password
 return channels

[docs] def get_password(self):
 """Retrieves the Bouncer password from Redis.

 Returns:
 str: The encrypted Bouncer password.
 """

 password = self.database.get("password=bouncer:password")
 return password.decode() if password else None

[docs] def set_password(self, password="cosmonaut"):
 """Saves a new Bouncer password to Redis.

 Args:
 password (str, optional): The new password for the Bouncer.
 """

 hashed_password = bcrypt.hashpw(password.encode(), bcrypt.gensalt())
 self.database.set("password=bouncer:password", hashed_password)

[docs] def check_password(self, password_attempt):
 """Checks a password attempt against the Bouncer password.

 Args:
 password_attempt (str): The password attempt.

 Returns:
 bool: Whether the password matched.
 """

 password = self.get_password()
 return bcrypt.hashpw(password_attempt.encode(),
 password.encode()) == password.encode()

[docs] def add_network(self, network, hostname, port,
 nickname, username, realname,
 password=None, usermode=0):
 """Adds a network to the Redis instance.

 Args:
 network (str): The name of the IRC network to connect to.
 hostname (str): The hostname of the IRC network to connect to.
 port (int): The port to connect using.
 nickname (str): The IRC nickname to use when connecting.
 username (str): The IRC ident to use when connecting.
 realname (str): The real name of the user.
 password (str, optional): Bouncer password. Defaults to ``None``.
 usermode (int, optional): The IRC usermode. Defaults to ``0``.
 """

 credentials = { "network" : network,
 "nickname" : nickname,
 "username" : username,
 "realname" : realname,
 "hostname" : hostname,
 "port" : port,
 "password" : password }

 key = "".join(["network=", network])
 self.database.set(key, json.dumps(credentials))

[docs] def remove_network(self, network, hard=True):
 """Removes a network from Redis.

 Args:
 network (str): The name of a network to remove.
 hard (bool): When True, clears all associated channels.
 """

 key = "".join(["network=", network])
 self.database.delete(key)
 if hard:
 channels = self.get_channels(network)
 for channel in channels.keys():
 info = channel.split(":")
 self.remove_channel(info[0], info[1])

[docs] def add_channel(self, network, channel, password=""):
 """Adds a channel to the Redis.

 Args:
 network (str): The name of a network.
 channel (str): The name of a channel.
 password (str, optional): The channel password. Defaults to ``""``.
 """

 key = "".join(["channel=", network, ":", channel])
 self.database.set(key, password or "")

[docs] def remove_channel(self, network, channel):
 """Removes a channel from Redis.

 Args:
 network (str): The name of a network.
 channel (str): The name of a channel.
 """

 key = "".join(["channel=", network, ":", channel])
 self.database.delete(key)

 © Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

_static/down.png

_themes/sphinx_rtd_theme/demo_docs/source/demo.html

 Navigation

 		
 index

 		
 modules |

 		Sputnik 0.0.0 documentation »

1 reStructuredText Demonstration

1.1 Examples of Syntax Constructs

		Author:		David Goodger

		Address:		123 Example Street
Example, EX Canada
A1B 2C3

		Contact:		docutils-develop@lists.sourceforge.net

		Authors:		Me; Myself; I

		organization:		humankind

		date:		$Date: 2012-01-03 19:23:53 +0000 (Tue, 03 Jan 2012) $

		status:		This is a “work in progress”

		revision:		$Revision: 7302 $

		version:		1

		copyright:		This document has been placed in the public domain. You
may do with it as you wish. You may copy, modify,
redistribute, reattribute, sell, buy, rent, lease,
destroy, or improve it, quote it at length, excerpt,
incorporate, collate, fold, staple, or mutilate it, or do
anything else to it that your or anyone else’s heart
desires.

		field name:		This is a generic bibliographic field.

		field name 2:		Generic bibliographic fields may contain multiple body elements.

Like this.

		Dedication:		For Docutils users & co-developers.

		abstract:		This document is a demonstration of the reStructuredText markup
language, containing examples of all basic reStructuredText
constructs and many advanced constructs.

Table of Contents

		1 reStructuredText Demonstration
		1.1 Examples of Syntax Constructs
		1.1.1 Structural Elements
		1.1.1.1 Section Title

		1.1.1.2 Transitions

		1.1.2 Body Elements
		1.1.2.1 Paragraphs
		1.1.2.1.1 Inline Markup

		1.1.2.2 Bullet Lists

		1.1.2.3 Enumerated Lists

		1.1.2.4 Definition Lists

		1.1.2.5 Field Lists

		1.1.2.6 Option Lists

		1.1.2.7 Literal Blocks

		1.1.2.8 Line Blocks

		1.1.2.9 Block Quotes

		1.1.2.10 Doctest Blocks

		1.1.2.11 Tables

		1.1.2.12 Footnotes

		1.1.2.13 Citations

		1.1.2.14 Targets
		1.1.2.14.1 Duplicate Target Names

		1.1.2.14.2 Duplicate Target Names

		1.1.2.15 Directives
		1.1.2.15.1 Document Parts

		1.1.2.15.2 Images

		1.1.2.15.3 Admonitions

		1.1.2.15.4 Topics, Sidebars, and Rubrics

		1.1.2.15.5 Target Footnotes

		1.1.2.15.6 Replacement Text

		1.1.2.15.7 Compound Paragraph

		1.1.2.16 Substitution Definitions

		1.1.2.17 Comments

		1.1.3 Field Lists

		1.1.4 Error Handling

1.1.1 Structural Elements

1.1.1.1 Section Title

That’s it, the text just above this line.

1.1.1.2 Transitions

Here’s a transition:

It divides the section.

1.1.2 Body Elements

1.1.2.1 Paragraphs

A paragraph.

1.1.2.1.1 Inline Markup

Paragraphs contain text and may contain inline markup: emphasis,
strong emphasis, inline literals, standalone hyperlinks
(http://www.python.org), external hyperlinks (Python [http://www.python.org/] [5]), internal
cross-references (example), external hyperlinks with embedded URIs
(Python web site [http://www.python.org]), footnote references
(manually numbered [1], anonymous auto-numbered [3], labeled
auto-numbered [2], or symbolic [*]), citation references
([CIT2002]), substitution references ([image: EXAMPLE]), and inline
hyperlink targets (see Targets below for a reference back to here).
Character-level inline markup is also possible (although exceedingly
ugly!) in reStructuredText. Problems are indicated by
|problematic| text (generated by processing errors; this one is
intentional).

The default role for interpreted text is Title Reference. Here are
some explicit interpreted text roles: a PEP reference (PEP 287 [http://www.python.org/dev/peps/pep-0287]); an
RFC reference (RFC 2822 [http://tools.ietf.org/html/rfc2822.html]); a subscript; a superscript;
and explicit roles for standard inline
markup.

Let’s test wrapping and whitespace significance in inline literals:
This is an example of --inline-literal --text, --including some--
strangely--hyphenated-words. Adjust-the-width-of-your-browser-window
to see how the text is wrapped. -- ---- -------- Now note the
spacing between the words of this sentence (words
should be grouped in pairs).

If the --pep-references option was supplied, there should be a
live link to PEP 258 here.

1.1.2.2 Bullet Lists

		A bullet list

		Nested bullet list.

		Nested item 2.

		Item 2.

Paragraph 2 of item 2.

		Nested bullet list.

		Nested item 2.
		Third level.

		Item 2.

		Nested item 3.

1.1.2.3 Enumerated Lists

		Arabic numerals.

		lower alpha)
		(lower roman)
		upper alpha.
		upper roman)

		Lists that don’t start at 1:

		Three

		Four

		C

		D

		iii

		iv

		List items may also be auto-enumerated.

1.1.2.4 Definition Lists

		Term

		Definition

		Term : classifier

		Definition paragraph 1.

Definition paragraph 2.

		Term

		Definition

1.1.2.5 Field Lists

		what:		Field lists map field names to field bodies, like database
records. They are often part of an extension syntax. They are
an unambiguous variant of RFC 2822 fields.

		how arg1 arg2:		The field marker is a colon, the field name, and a colon.

The field body may contain one or more body elements, indented
relative to the field marker.

1.1.2.6 Option Lists

For listing command-line options:

		
-a
		command-line option “a”

		
-b file
		options can have arguments
and long descriptions

		
--long
		options can be long also

		
--input=file
		long options can also have
arguments

		
--very-long-option

		 		The description can also start on the next line.

The description may contain multiple body elements,
regardless of where it starts.

		
-x, -y, -z
		Multiple options are an “option group”.

		
-v, --verbose
		Commonly-seen: short & long options.

		
-1 file, --one=file, --two file

		 		Multiple options with arguments.

		
/V
		DOS/VMS-style options too

There must be at least two spaces between the option and the
description.

1.1.2.7 Literal Blocks

Literal blocks are indicated with a double-colon (”::”) at the end of
the preceding paragraph (over there -->). They can be indented:

if literal_block:
 text = 'is left as-is'
 spaces_and_linebreaks = 'are preserved'
 markup_processing = None

Or they can be quoted without indentation:

>> Great idea!
>
> Why didn't I think of that?

1.1.2.8 Line Blocks

This is a line block. It ends with a blank line.

Each new line begins with a vertical bar (“|”).

Line breaks and initial indents are preserved.

Continuation lines are wrapped portions of long lines;
they begin with a space in place of the vertical bar.

The left edge of a continuation line need not be aligned with
the left edge of the text above it.

This is a second line block.

Blank lines are permitted internally, but they must begin with a “|”.

Take it away, Eric the Orchestra Leader!

A one, two, a one two three four

Half a bee, philosophically,

must, ipso facto, half not be.

But half the bee has got to be,

vis a vis its entity. D’you see?

But can a bee be said to be

or not to be an entire bee,

when half the bee is not a bee,

due to some ancient injury?

Singing...

1.1.2.9 Block Quotes

Block quotes consist of indented body elements:

My theory by A. Elk. Brackets Miss, brackets. This theory goes
as follows and begins now. All brontosauruses are thin at one
end, much much thicker in the middle and then thin again at the
far end. That is my theory, it is mine, and belongs to me and I
own it, and what it is too.

—Anne Elk (Miss)

1.1.2.10 Doctest Blocks

>>> print 'Python-specific usage examples; begun with ">>>"'
Python-specific usage examples; begun with ">>>"
>>> print '(cut and pasted from interactive Python sessions)'
(cut and pasted from interactive Python sessions)

1.1.2.11 Tables

Here’s a grid table followed by a simple table:

		Header row, column 1
(header rows optional)
		Header 2
		Header 3
		Header 4

		body row 1, column 1
		column 2
		column 3
		column 4

		body row 2
		Cells may span columns.

		body row 3
		Cells may
span rows.
		
		Table cells

		contain

		body elements.

		body row 4

		body row 5
		Cells may also be
empty: -->
		

		Inputs
		Output

		A
		B
		A or B

		False
		False
		False

		True
		False
		True

		False
		True
		True

		True
		True
		True

1.1.2.12 Footnotes

		[1]		(1, 2) A footnote contains body elements, consistently indented by at
least 3 spaces.

This is the footnote’s second paragraph.

		[2]		(1, 2) Footnotes may be numbered, either manually (as in [1]) or
automatically using a “#”-prefixed label. This footnote has a
label so it can be referred to from multiple places, both as a
footnote reference ([2]) and as a hyperlink reference
(label).

		[3]		This footnote is numbered automatically and anonymously using a
label of “#” only.

		[*]		Footnotes may also use symbols, specified with a “*” label.
Here’s a reference to the next footnote: [†].

		[†]		This footnote shows the next symbol in the sequence.

		[4]		Here’s an unreferenced footnote, with a reference to a
nonexistent footnote: [5]_.

1.1.2.13 Citations

		[CIT2002]		(1, 2) Citations are text-labeled footnotes. They may be
rendered separately and differently from footnotes.

Here’s a reference to the above, [CIT2002], and a [nonexistent]
citation.

1.1.2.14 Targets

This paragraph is pointed to by the explicit “example” target. A
reference can be found under Inline Markup, above. Inline
hyperlink targets are also possible.

Section headers are implicit targets, referred to by name. See
Targets, which is a subsection of Body Elements.

Explicit external targets are interpolated into references such as
“Python [http://www.python.org/] [5]”.

Targets may be indirect and anonymous. Thus this phrase may also
refer to the Targets section.

Here’s a `hyperlink reference without a target`_, which generates an
error.

1.1.2.14.1 Duplicate Target Names

Duplicate names in section headers or other implicit targets will
generate “info” (level-1) system messages. Duplicate names in
explicit targets will generate “warning” (level-2) system messages.

1.1.2.14.2 Duplicate Target Names

Since there are two “Duplicate Target Names” section headers, we
cannot uniquely refer to either of them by name. If we try to (like
this: `Duplicate Target Names`_), an error is generated.

1.1.2.15 Directives

		1.1.2.15.1 Document Parts

		1.1.2.15.2 Images

		1.1.2.15.3 Admonitions

		1.1.2.15.4 Topics, Sidebars, and Rubrics

		1.1.2.15.5 Target Footnotes

		1.1.2.15.6 Replacement Text

		1.1.2.15.7 Compound Paragraph

These are just a sample of the many reStructuredText Directives. For
others, please see
http://docutils.sourceforge.net/docs/ref/rst/directives.html.

1.1.2.15.1 Document Parts

An example of the “contents” directive can be seen above this section
(a local, untitled table of contents) and at the beginning of the
document (a document-wide table of contents).

1.1.2.15.2 Images

An image directive (also clickable – a hyperlink reference):

[image: _themes/sphinx_rtd_theme/demo_docs/source/images/title.png]
A figure directive:

[image: reStructuredText, the markup syntax]
A figure is an image with a caption and/or a legend:

		re
		Revised, revisited, based on ‘re’ module.

		Structured
		Structure-enhanced text, structuredtext.

		Text
		Well it is, isn’t it?

This paragraph is also part of the legend.

A figure directive with center alignment

[image: _themes/sphinx_rtd_theme/demo_docs/source/images/title.png]

1.1.2.15.3 Admonitions

Attention

Directives at large.

Caution

Don’t take any wooden nickels.

Danger

Mad scientist at work!

Error

Does not compute.

Hint

It’s bigger than a bread box.

Important

		Wash behind your ears.

		Clean up your room.

		Call your mother.

		Back up your data.

Note

This is a note.

Tip

15% if the service is good.

Warning

Strong prose may provoke extreme mental exertion.
Reader discretion is strongly advised.

And, by the way...

You can make up your own admonition too.

1.1.2.15.4 Topics, Sidebars, and Rubrics

Sidebar Title

Optional Subtitle

This is a sidebar. It is for text outside the flow of the main
text.

This is a rubric inside a sidebar

Sidebars often appears beside the main text with a border and
background color.

Topic Title

This is a topic.

This is a rubric

1.1.2.15.5 Target Footnotes

		[5]		(1, 2, 3) http://www.python.org/

1.1.2.15.6 Replacement Text

I recommend you try Python, the best language around [http://www.python.org/] [5].

1.1.2.15.7 Compound Paragraph

This paragraph contains a literal block:

Connecting... OK
Transmitting data... OK
Disconnecting... OK

and thus consists of a simple paragraph, a literal block, and
another simple paragraph. Nonetheless it is semantically one
paragraph.

This construct is called a compound paragraph and can be produced
with the “compound” directive.

1.1.2.16 Substitution Definitions

An inline image ([image: EXAMPLE]) example:

(Substitution definitions are not visible in the HTML source.)

1.1.2.17 Comments

Here’s one:

(View the HTML source to see the comment.)

1.1.3 Field Lists

		Field List:		Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat.

Duis aute irure dolor in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

some text

		Field List 2:		Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor

1.1.4 Error Handling

Any errors caught during processing will generate system messages.

|*** Expect 6 errors (including this one). ***|

There should be six messages in the following, auto-generated
section, “Docutils System Messages”:

demo.rst from: http://docutils.sourceforge.net/docs/user/rst/demo.txt

 © Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

_static/file.png

_themes/sphinx_rtd_theme/demo_docs/source/index.html

 Navigation

 		
 index

 		
 modules |

 		Sputnik 0.0.0 documentation »

Demo Docs

		Page Status:		Incomplete

		Last Reviewed:		2013-10-29

Contents:

		1 reStructuredText Demonstration
		1.1 Examples of Syntax Constructs

		A list
		Second list level

Maaaaath!

This is a test. Here is an equation:
\(X_{0:5} = (X_0, X_1, X_2, X_3, X_4)\).
Here is another:

\[\nabla^2 f =
\frac{1}{r^2} \frac{\partial}{\partial r}
\left(r^2 \frac{\partial f}{\partial r} \right) +
\frac{1}{r^2 \sin \theta} \frac{\partial f}{\partial \theta}
\left(\sin \theta \, \frac{\partial f}{\partial \theta} \right) +
\frac{1}{r^2 \sin^2\theta} \frac{\partial^2 f}{\partial \phi^2}\]

Giant tables

		Header 1
		Header 2
		Header 3
		Header 1
		Header 2
		Header 3
		Header 1
		Header 2
		Header 3
		Header 1
		Header 2
		Header 3

		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3

		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3

		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3

		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3
		body row 1
		column 2
		column 3

API Test

Optional parameter args

At this point optional parameters cannot be generated from code [https://groups.google.com/forum/#!topic/sphinx-users/_qfsVT5Vxpw].
However, some projects will manually do it, like so:

This example comes from django-payments module docs [http://django-payments.readthedocs.org/en/latest/modules.html#payments.authorizenet.AuthorizeNetProvider].

		
class payments.dotpay.DotpayProvider(seller_id, pin[, channel=0[, lock=False], lang='pl'])

		This backend implements payments using a popular Polish gateway, Dotpay.pl [http://www.dotpay.pl].

Due to API limitations there is no support for transferring purchased items.

		Parameters:		
		seller_id – Seller ID assigned by Dotpay

		pin – PIN assigned by Dotpay

		channel – Default payment channel (consult reference guide)

		lang – UI language

		lock – Whether to disable channels other than the default selected above

Code test

parsed-literal test
curl -O http://someurl/release-0.0.0.tar-gz

{
"windows": [
 {
 "panes": [
 {
 "shell_command": [
 "echo 'did you know'",
 "echo 'you can inline'"
]
 },
 {
 "shell_command": "echo 'single commands'"
 },
 "echo 'for panes'"
],
 "window_name": "long form"
 }
],
"session_name": "shorthands"
}

Sidebar

Ch’ien / The Creative

[image: ../../../../_images/yi_jing_01_chien.jpg]
Above CH’IEN THE CREATIVE, HEAVEN

Below CH’IEN THE CREATIVE, HEAVEN

The first hexagram is made up of six unbroken lines. These unbroken lines stand for the primal power, which is light-giving, active, strong, and of the spirit. The hexagram is consistently strong in character, and since it is without weakness, its essence is power or energy. Its image is heaven. Its energy is represented as unrestricted by any fixed conditions in space and is therefore conceived of as motion. Time is regarded as the basis of this motion. Thus the hexagram includes also the power of time and the power of persisting in time, that is, duration.

The power represented by the hexagram is to be interpreted in a dual sense in terms of its action on the universe and of its action on the world of men. In relation to the universe, the hexagram expresses the strong, creative action of the Deity. In relation to the human world, it denotes the creative action of the holy man or sage, of the ruler or leader of men, who through his power awakens and develops their higher nature.

Code with Sidebar

A code example

With a sidebar on the right.

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

		# -*- coding: utf-8 -*-
"""Test Module for sphinx_rtd_theme."""

class Foo:

 r"""Docstring for class Foo.

 This text tests for the formatting of docstrings generated from output
 ``sphinx.ext.autodoc``. Which contain reST, but sphinx nests it in the
 ``<dl>``, and ``<dt>`` tags. Also, ``<tt>`` is used for class, method names
 and etc, but those will *always* have the ``.descname`` or
 ``.descclassname`` class.

 Normal ``<tt>`` (like the <tt> I just wrote here) needs to be shown with
 the same style as anything else with ````this type of markup````.

 It's common for programmers to give a code example inside of their
 docstring::

 from test_py_module import Foo

 myclass = Foo()
 myclass.dothismethod('with this argument')
 myclass.flush()

 print(myclass)

 """

 #: Doc comment for class attribute Foo.bar.
 #: It can have multiple lines.
 bar = 1

 flox = 1.5 #: Doc comment for Foo.flox. One line only.

 baz = 2
 """Docstring for class attribute Foo.baz."""

 def __init__(self, qux, spam=False):

Boxes

Tip

Equations within a note
\(G_{\mu\nu} = 8 \pi G (T_{\mu\nu} + \rho_\Lambda g_{\mu\nu})\).

Note

Equations within a note
\(G_{\mu\nu} = 8 \pi G (T_{\mu\nu} + \rho_\Lambda g_{\mu\nu})\).

Danger

Equations within a note
\(G_{\mu\nu} = 8 \pi G (T_{\mu\nu} + \rho_\Lambda g_{\mu\nu})\).

Warning

Equations within a note
\(G_{\mu\nu} = 8 \pi G (T_{\mu\nu} + \rho_\Lambda g_{\mu\nu})\).

Inline code and references

reStructuredText [http://docutils.sourceforge.net/rst.html] is a markup language. It can use roles and
declarations to turn reST into HTML.

In reST, *hello world* becomes hello world. This is
because a library called Docutils [http://docutils.sourceforge.net/] was able to parse the reST and use a
Writer to output it that way.

If I type ``an inline literal`` it will wrap it in <tt>. You can
see more details on the Inline Markup [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#inline-markup] on the Docutils homepage.

Also with sphinx.ext.autodoc, which I use in the demo, I can link to
test_py_module.test.Foo. It will link you right my code
documentation for it.

Note

		Every other line in this table will have white text on a white background.

		This is bad.

		Example

		Thing1

		Thing2

		Thing3

Emphasized lines with line numbers

		1
2
3
4
5

		def some_function():
 interesting = False
 print 'This line is highlighted.'
 print 'This one is not...'
 print '...but this one is.'

Citation

Here I am making a citation [1]

		[1]		This is the citation I made, let’s make this extremely long so that we can tell that it doesn’t follow the normal responsive table stuff.

 © Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

_static/up-pressed.png

_modules/server.html

 Navigation

 		
 index

 		
 modules |

 		Sputnik 0.0.0 documentation »

 		Module code »

 Source code for server

"""Sputnik HTTPServer Implementation

This module provides the Sputnik HTTPServer implementation. It is responsible
for serving the web interface, and interfaces with the Bouncer singleton to
connect to and disconnect from networks.
"""

import os
import handlers
import tornado.web
import tornado.httpserver
import tornado.platform.asyncio

[docs]class HTTPServer(tornado.web.Application):
 """An Asynchronous HTTP Server that diplays the frontend.

 The HTTPServer renders the frontend and accepts commands used to control
 the Bouncer singleton. For development purposes, it may be helpful to set
 the DEBUG environment variable. e.g. `export DEBUG=True`
 """

 def __init__(self, bouncer):
 """Creates an instance of an HTTPServer.

 Defines the available routes and initializes the server using the
 static path and template path specified within.

 Args:
 bouncer (sputnik.Bouncer): The singleton Bouncer instance.
 """

 self.bouncer = bouncer

 route_dict = dict(bouncer=self.bouncer)
 routes = [(r"/edit/(\w+)/?", handlers.EditHandler, route_dict),
 (r"/delete/(\w+)/?", handlers.DeleteHandler, route_dict),
 (r"/add/?", handlers.AddHandler, route_dict),
 (r"/login/?", handlers.LoginHandler, route_dict),
 (r"/logout/?", handlers.LogoutHandler, route_dict),
 (r"/settings/?", handlers.SettingsHandler, route_dict),
 (r"/?", handlers.MainHandler, route_dict)]

 tornado.platform.asyncio.AsyncIOMainLoop().install()
 super().__init__(debug=os.getenv("DEBUG"),
 handlers=routes,
 cookie_secret="cookiesecretneeded",
 login_url="/login",
 static_path="sputnik/static",
 template_path="sputnik/templates")

[docs] def start(self, port=8080):
 """Starts the HTTP listen server.

 This loads the Tornado HTTPServer on the specified port.

 Args:
 port (int, optional): The port to listen on. Defaults to 8080
 """

 port = os.getenv("PORT", port)
 tornado.httpserver.HTTPServer(self).listen(port)

 © Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

_modules/connection.html

 Navigation

 		
 index

 		
 modules |

 		Sputnik 0.0.0 documentation »

 		Module code »

 Source code for connection

"""Sputnik Connection Implementation

This module provides the Sputnik Connection implementation. This is a base
class that defines several helper functions for common tasks related to
transport-level interactions, such as message encoding and message passing.
"""

import asyncio

[docs]class Connection(asyncio.Protocol):
 """A generic instance of a network connection.

 A Connection is a base class that represents an instance of a network
 connection. The Connection implements commonly used actions that may be
 performed on messages.
 """

[docs] def decode(self, line):
 """Attempts to decode a line as UTF-8, with fallback to Latin-1.

 We try to maintain a full-Unicode presence where possible. However, not
 all IRC servers are encoding using UTF-8, so we shadow `str.decode()`
 and provide a fallback to Latin-1 when needed.

 Args:
 line (str): A byte-string message to decode.

 Returns:
 str: A decoded message.
 """

 try: return line.decode()
 except UnicodeDecodeError:
 return line.decode("latin1")

[docs] def normalize(self, line, ending="\r\n"):
 """Ensures that a line is terminated with the correct line endings.

 The IRC protocol specifies that line endings should use CRLF line
 endings. This ensures that lines conform to this standard. In the event
 of a server that does not conform to the specification, we preserve
 the ability to provide an alternative line ending character sequence.

 Args:
 line (str): A message to be sent to the IRC network.
 ending (str, optional): The line ending. Defaults to ``"\r\n"``.
 """

 if not line.endswith(ending):
 line += ending
 return line

[docs] def send(self, *args):
 """Writes a message to the connected interface.

 Messages are typically of the form ``<command> <message>``. This
 encapsulates the IRC messaging protocol by concatenating messages and
 checking their line endings before encoding the message into raw bytes,
 as part of the asyncio transport mechanism.

 Args:
 args (list of str): A list of strings to concatenate.
 """

 message = self.normalize(" ".join(args))
 self.transport.write(message.encode())

 © Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Sputnik 0.0.0 documentation »

 All modules for which code is available

		bouncer

		client

		connection

		datastore

		handlers

		network

		server

 © Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 modules |

 		Sputnik 0.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

_modules/client.html

 Navigation

 		
 index

 		
 modules |

 		Sputnik 0.0.0 documentation »

 		Module code »

 Source code for client

"""Sputnik Client Implementation

This module provides the Sputnik Client implementation. This is a subclass of
a Connection, and defines an interface to IRC client applications implementing
_RFC 2812: https://tools.ietf.org/html/rfc2812 .
"""

from connection import Connection

[docs]class Client(Connection):
 """An instance of a connection from an IRC client.

 A Client is the product of an asyncio protocol factory, and represents
 an instance of a connection from an IRC client to the listen server. It
 does not implement an actual IRC client, as defined in
 _RFC 2812: https://tools.ietf.org/html/rfc2812 .

 Attributes:
 bouncer (sputnik.Bouncer): A reference to the Bouncer singleton.
 broker (sputnik.Network): The connected Network instance.
 network (str): The name of the IRC network to connect to.
 ready (bool): Indicates if the Client has connected to a Network.
 """

 def __init__(self, bouncer):
 """Creates an instance of a Client.

 The Network and Broker attributes are defined here in order to support
 Look-Before-You-Leap (LBYL). This is an explicit design decision made
 in favor of simplicity and readability. The bouncer reference is needed
 in order to access the list of connected Networks.

 Args:
 bouncer (sputnik.Bouncer): The singleton Bouncer instance.
 """

 self.bouncer = bouncer
 self.network = None
 self.broker = None

[docs] def connection_made(self, transport):
 """Registers the connected Client with the Bouncer.

 Adds the Client to the set of connected Clients in the Bouncer and
 saves the transport for later use.
 """

 print("Client Connected to Bouncer")
 self.bouncer.clients.add(self)
 self.transport = transport
 self.ready = False

[docs] def connection_lost(self, exc):
 """Unregister the connected Client from the Bouncer.

 Removes the Client from the set of connected Clients in the Bouncer
 before the connection is terminated. After this point, there should be
 no remaining references to this instance of the Client.
 """

 print("Client Disconnected from Bouncer")
 self.bouncer.clients.remove(self)

[docs] def data_received(self, data):
 """Handles incoming messages from connected IRC clients.

 Messages coming from IRC clients are potentially batched, and need to
 be parsed into individual lines before any other operation may occur.
 Afterwards, we split lines according to the IRC message format and then
 perform actions as appropriate.
 """

 for line in self.decode(data).rstrip().split("\r\n"):
 l = line.split(" ", 1)

 if l[0] == "QUIT": pass # Suppress the QUIT Command
 elif l[0] == "USER":

 self.network = l[1].split(" ")[0]
 if self.network not in self.bouncer.networks:
 self.send("This Network Does Not Exist")
 else: self.broker = self.bouncer.networks[self.network]

 elif l[0] == "JOIN":

 for channel in l[1].split(","):
 channel = channel.split(" ")
 password = channel[1] if len(channel) > 1 else None
 if self.bouncer.datastore:
 self.bouncer.datastore.add_channel(
 self.network, channel[0], password)
 self.forward(line)
 self.forward("WHO", channel[0])

 elif l[0] == "PART":

 if self.bouncer.datastore:
 self.bouncer.datastore.remove_channel(
 self.network, l[1].split(" ")[0])
 self.forward(line)

 else: self.forward(line)

 if self.broker and not self.ready:
 for line in self.broker.server_log: self.send(line)
 self.ready = True

[docs] def forward(self, *args):
 """Writes a message to the Network.

 Because the Client represents an instance of a connection from an IRC
 client, we instead need to write to the transport associated with the
 connected network.

 Args:
 args (list of str): A list of strings to concatenate.
 """

 message = self.normalize(" ".join(args))
 if self.broker:
 self.broker.transport.write(message.encode())
 print("[C to B]\t%s" % message, end="")

 © Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

_images/yi_jing_01_chien.jpg

_modules/handlers.html

 Navigation

 		
 index

 		
 modules |

 		Sputnik 0.0.0 documentation »

 		Module code »

 Source code for handlers

"""Sputnik Request Handlers

This module provides Tornado Request Handlers for the Sputnik Web Interface.
"""

import tornado.web
import os

[docs]class BaseHandler(tornado.web.RequestHandler):
 """A base handler that stores the Bouncer singleton."""

[docs] def initialize(self, bouncer):
 """Initializes the RequestHandler and stores the Bouncer.

 Args:
 bouncer (sputnik.Bouncer): The singleton Bouncer instance.
 """

 self.bouncer = bouncer
 self.env = { "connect_string" : os.getenv("RUPPELLS_SOCKETS_FRONTEND_URI") }

[docs] def get_current_user(self):
 return self.get_secure_cookie("user")

[docs]class MainHandler(BaseHandler):
 """The main RequestHandler that serves the home page.

 The home page displays the current list of networks.
 """

 @tornado.web.authenticated
 @tornado.web.addslash
[docs] def get(self):
 """Renders the home page.

 The home page displays the current list of networks.
 """

 self.render("index.html", networks=self.bouncer.networks, **self.env)

[docs]class EditHandler(BaseHandler):
 """The RequestHandler that serves the edit network page.

 The edit network page uses a form to receive updated settings from users.
 When a network is editted, it is disconnected and then recreated using the
 new settings.
 """

 @tornado.web.authenticated
 @tornado.web.addslash
[docs] def get(self, network_name):
 """Renders the edit network page.

 The edit network page shows current settings for a network and provides
 a form for submitting changes to that network.

 Args:
 network_name (str): Network name of the network to edit.
 """

 network = self.bouncer.networks[network_name]
 self.render("edit.html", network=network, **self.env)

 @tornado.web.authenticated
 @tornado.web.addslash
[docs] def post(self, network_name):
 """Handles edit network requests.

 The existing network is disconnected and a new connection is started
 using the new settings.

 Args:
 network_name (str): Network name of the network to edit.
 """

 self.bouncer.remove_network(network_name)

 network_name = self.get_argument("networkname")
 network_address = self.get_argument("networkaddress")
 nickname = self.get_argument("nickname")
 realname = self.get_argument("realname")
 ident = self.get_argument("ident")
 password = self.get_argument("password")
 hostname, port = network_address.split(":")

 self.bouncer.add_network(network=network_name,
 hostname=hostname,
 port=port,
 nickname=nickname,
 realname=realname,
 username=ident,
 password=password)

 self.redirect("/")

[docs]class DeleteHandler(BaseHandler):
 """The RequestHandler that handles delete network requests."""

 @tornado.web.authenticated
 @tornado.web.addslash
[docs] def get(self, network_name):
 """Handles delete network requests.

 Args:
 network_name (str): Network name of the network to delete.
 """

 self.bouncer.remove_network(network_name)
 self.redirect("/")

[docs]class AddHandler(BaseHandler):
 """The RequestHandler that serves the add network page.

 The add network page uses a form to receive new network settings.
 If a network already exists using the provided name, the network
 is not added.
 """

 @tornado.web.authenticated
 @tornado.web.addslash
[docs] def get(self):
 """Renders the add network page.

 The add network page provides a form for adding a new network,
 complete with placeholder settings.
 """

 self.render("add.html", **self.env)

 @tornado.web.authenticated
 @tornado.web.addslash
[docs] def post(self):
 """Handles add network requests.

 If a network already exists using the provided name, the network is
 not added.
 """

 network_name = self.get_argument("networkname")
 network_address = self.get_argument("networkaddress")
 nickname = self.get_argument("nickname")
 ident = self.get_argument("ident")
 password = self.get_argument("password")
 hostname, port = network_address.split(":")

 if network_name not in self.bouncer.networks:
 self.bouncer.add_network(network=network_name,
 hostname=hostname,
 port=port,
 nickname=nickname,
 username=ident,
 realname=ident,
 password=password)

 self.redirect("/")

[docs]class LoginHandler(BaseHandler):
 """The RequestHandler that serves the login page.

 The login page prompts the user for their password and authenticates them
 when the password matches the one stored by the bouncer in its database.
 """

 @tornado.web.addslash
[docs] def get(self):
 """Renders the login page.

 The login page uses a form to ask the user for their password.
 """

 self.render("login.html", **self.env)

 @tornado.web.addslash
[docs] def post(self):
 """Handles login requests.

 Checks the password against the stored password and authenticates.
 """

 password = self.get_argument("password")

 if self.bouncer.datastore.check_password(password):
 self.set_secure_cookie("user", "securestringneeded")

 self.redirect("/")

[docs]class LogoutHandler(BaseHandler):
 """The RequestHandler that handles log out requests.

 Redirects to the homepage after clearing authentication.
 """

 @tornado.web.authenticated
 @tornado.web.addslash
[docs] def get(self):
 """Handles log out requests.

 Redirects to the homepage after clearing authentication.
 """

 self.clear_cookie("user")
 self.redirect("/")

[docs]class SettingsHandler(BaseHandler):
 """The RequestHandler that serves the settings page.

 Allows users to change their password.
 """

 @tornado.web.authenticated
 @tornado.web.addslash
[docs] def get(self):
 """Renders the settings page.

 The settings page uses a form to allow users to change their password.
 """

 self.render("settings.html", **self.env)

 @tornado.web.authenticated
 @tornado.web.addslash
[docs] def post(self):
 """Handles settings requests.

 Change password requests require the current password to match and
 two entries of the new password to match.
 """

 current = self.get_argument("current-password")
 new_1 = self.get_argument("new-password-1")
 new_2 = self.get_argument("new-password-2")

 if self.bouncer.datastore.check_password(current) and new_1 == new_2:
 self.bouncer.datastore.set_password(new_1)

 self.render("settings.html", **self.env)

 © Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

_modules/network.html

 Navigation

 		
 index

 		
 modules |

 		Sputnik 0.0.0 documentation »

 		Module code »

 Source code for network

"""Sputnik Network Implementation

This module provides the Sputnik Network implementation. This is a subclass of
a Connection, and defines an interface to IRC server networks implementing
_RFC 2813: https://tools.ietf.org/html/rfc2813 .
"""

from collections import deque
from connection import Connection

[docs]class Network(Connection):
 """An instance of a connection to an IRC network.

 A Network is the product of an asyncio protocol factory, and represents an
 instance of a connection from an IRC client to an IRC server. This could
 be either a single IRC server, or more likely, a network of servers behind
 a load balancer. It does not implement an actual IRC server, as defined in

 Attributes:
 ??? (revisit this later)
 """

 def __init__(self, bouncer, network, hostname, port,
 nickname, username, realname,
 password=None, usermode=0):
 """Creates an instance of a Network.

 This performs a minimum level of string formatting and type coercion in
 order to conform to the IRC specifications during the connection stage.

 Args:
 bouncer (sputnik.Bouncer): The singleton Bouncer instance.
 network (str): The name of the IRC network to connect to.
 hostname (str): The hostname of the IRC network to connect to.
 port (int): The port to connect using.
 nickname (str): The IRC nickname to use when connecting.
 username (str): The IRC ident to use when connecting.
 realname (str): The real name of the user.
 password (str, optional): Bouncer password. Defaults to ``None``.
 usermode (int, optional): The IRC usermode. Defaults to ``0``.
 """

 self.usermode = str(usermode)
 self.username = username
 self.nickname = nickname
 self.password = password
 self.realname = realname
 self.bouncer = bouncer
 self.network = network
 self.hostname = hostname
 self.port = port

[docs] def connection_made(self, transport):
 """Registers the connected Network with the Bouncer.

 Adds the Network to the set of connected Networks in the Bouncer and
 saves the transport for later use. This also creates a collection of
 buffers and logging facilities, and initiates the authentication
 handshake, if applicable.
 """

 print("Bouncer Connected to Network")
 if self.network in self.bouncer.networks:
 self.bouncer.networks[self.network].transport.close()
 self.bouncer.networks[self.network] = self

 self.connected = True
 self.transport = transport
 self.linebuffer = ""
 self.server_log = []
 self.chat_history = deque()

 self.send("PASS", self.password) if self.password else None
 self.send("NICK", self.nickname)
 self.send("USER", self.username, self.usermode, "*",
 ":%s" % self.realname)

 if self.bouncer.datastore:
 channels = self.bouncer.datastore.get_channels(self.network)
 for channel_info, password in channels.items():
 channel_name = channel_info.split(":")[1]
 self.send("JOIN", channel_name, password or "")

[docs] def attempt_reconnect(self, attempt=0, retries=5):
 """Attempts to reconnect to a network that unexpectedly disconnected.

 This is only called if we drop the connection to a network and the
 connected flag is set, to distinguish from intentional disconnects.

 Args:
 attempt (int): The current attempt count.
 retries (int): The number of times to attempt to reconnect.
 """

 if attempt <= retries:

 network = self.bouncer.add_network(
 self.network, self.hostname, self.port,
 self.nickname, self.username,
 self.password, self.usermode)

 if network.connected: return
 asyncio.sleep(2**attempt)
 self.attempt_reconnect(attempt + 1)

[docs] def connection_lost(self, exc):
 """Unregisters the connected Network from the Bouncer.

 Removes the Network from the dictionary of connected Clients in the
 Bouncer before the connection is terminated. After this point, there
 should be no remaining references to this instance of the Network.
 """
 self.bouncer.networks.pop(self.network)
 if not self.connected:
 print("Bouncer Disconnected from Network")
 else: self.attempt_reconnect()

[docs] def data_received(self, data):
 """Handles incoming messages from connected IRC networks.

 Messages coming from IRC networks are potentially batched and need to
 be parsed into individual lines before any other operation may occur.
 On certain occasions, incoming data may overflow the transport buffer,
 requiring additional logic to reconstitute the messages into a single
 stream. Afterwards, we split lines according to the IRC message format
 and perform actions as appropriate.
 """

 data = self.decode(data)
 if not data.endswith("\r\n"):
 self.linebuffer += data
 return

 for line in (self.linebuffer + data).rstrip().split("\r\n"):

 print("[N to B]\t%s" % line)

 l = line.split(" ", 2)
 if l[0] == "PING": self.send("PONG", l[1])
 elif l[1] == "PONG": self.forward("PONG", l[2])
 elif l[1] == "NOTICE" or l[1] == "MODE":
 if l[2].startswith("*"):
 self.server_log.append(line)
 else:
 self.chat_history.append(line)

 elif l[1].isdigit() and (int(l[1]) in range(1, 6)
 or int(l[1]) in range(250, 256)
 or int(l[1]) in range(265, 267)
 or int(l[1]) in range(375, 377)
 or int(l[1]) == 372):

 self.server_log.append(line)

 else: self.chat_history.append(line)

 self.linebuffer = ""

 if self.bouncer.clients:
 while self.chat_history:
 line = self.chat_history.popleft()
 self.forward(line)

[docs] def forward(self, *args):
 """Writes a message to all connected CLients.

 Because the Network represents an instance of a connection to an IRC
 network, we instead need to write to the transports of all clients.

 Args:
 args (list of str): A list of strings to concatenate.
 """

 message = self.normalize(" ".join(args))
 for client in self.bouncer.clients:
 if client.broker == self:
 client.transport.write(message.encode())
 print("[B to C]\t%s" % message, end="")

 © Copyright 2014, Kevin Fung.
 Last updated on Dec 04, 2014.
 Created using Sphinx 1.3b1.

_images/screen_mobile.png
Getting Started

Write Your Docs

_static/minus.png

